Image credit: Unsplash

Deep-STRESS Capsule Video Endoscopy Image Enhancement (CIC 2018)

Image credit: Unsplash

Deep-STRESS Capsule Video Endoscopy Image Enhancement (CIC 2018)

Abstract

This paper proposes a unified framework for capsule video endoscopy image enhancement with an objective to enhance the diagnostic values of these images. The proposed method is based on a hybrid approach of deep learning and classical image processing techniques. Given an input image, it is decomposed spatially into multilayer features. We estimate the base layer with pretrained deep edge aware filters that are learned on the flicker dataset. The detail layers are estimated by the spatio-temporal retinex-inspired envelope with a stochastic sampling technique. The enhanced image is computed by a convex linear combination of the base and the detail layers giving detailed and shadow surface enhanced image. To show its potential, performance comparison between with and without the proposed image enhancement technique is shown using several video images obtained from capsule endoscopy for different parts of digestive organ. Moreover, different learned filters such as Bilateral and L norm are compared for enhancement using an objective image quality metric, BRISQUE, to show the generality of the proposed method.

Publication
In Color and Imaging Conference
Avatar
Ahmed Mohammed

My research interests include medical imaging, computer vision, machine learning.